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Two-state teleportation
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Quantum teleportation with additionalpriori information about the input state achieves higher fidelity than
teleportation of a completely unknown state. However, perfect teleporation of two nonorthogonal input states
requires the same amount of entanglement as perfect teleportation of an unknown state, namely one ebit. We
analyze how well two-state teleportation can be achieved using every degree of pure-state entanglement. We
find the highest fidelity of “teleportation” that can be achieved with only classical communication but no
shared entanglement. A two-state telecloning scheme is constructed.

PACS numbes): 03.67—a, 89.70+c, 89.80+h, 03.65.Bz

[. INTRODUCTION +cos(@?2)|1) with equal probabilities. Alice then knows al-
most everything about the state. In effect, she has to transmit
The transmission of quantum states can be accomplisheene bit of information to Bob saying which of the two states
by either the direct sending of qubits or by the transmissiorfhe has. Is it possible to teleport the quantum state in this
of classical bits where the sender and receiver share e2S€, using less than the full unit of entanglement required
tanglement. In schemes for quantum teleportation, it ha¥hen the state is completely unknown?
been shown that the transmission of two classical bits, to- It turns out, rather surprisingly, that it is not possible and
gether with the use of one ebit, achieves the same results 42t & full unit of entanglement is needed even for teleporta-
sending one qubit1]. tion of only two states. This is shown in Sec. lll. In Sec. Il
If the state to be teleported is completely unknown, thee find the upper bound for the fidelity of sending the state
fact that the amount of entanglement between two separatéfth no entanglement. In Sec. IV, we consider teleportation
subsystems may not increase under local operations meaH§ing & nonmaximally entangled channel. We make some
that faithful teleporation cannot be achieved without one fullconnections between teleportation and cloning in Sec. V and
unit of entanglement. The argument goes as follows. Alice’sdapt the telecloning scheme of Murebal. [4] to the case
particle is initially in an unknown state, which could be a Of telecloning two nonorthogonal states. The two-state tele-
mixed state due to entanglement with another parfRiat ~ cloning state is now different from that for universal tele-
Alice’s end. After the teleportation, the entanglement be-cloning. We find that the amount of entanglement required
tween Alice’s particle aneR is transferred to an entangle- between the sender and recipients is now state dependent.

ment between Bob’s particle ariRlby entanglement swap-
ping [2]. The original entangled channel between Alice and

Bob is completely destroyed. Local operations and classical For comparison, we first determine what fidelity of trans-
communication cannot increase the entanglement betwegfjission can be achieved without using any entanglement,
Alice and Bob. Therefore the original entanglement in thepny classical communication. Alice measures her state and
channel must be at least as high as the final entanglemeggnds the result to Bob, who makes his best guess of the state

between Bob's particle anR. However, the initial state of pased on this information. The fidelity of sending the state
Alice’s particle is completely unknown; it may be a maxi- |y is defined as

mally mixed state, arising because Alice’s particle is maxi-

Il. SCHEMES WITHOUT ENTANGLEMENT

mally entangled to another particl@, This would make the n

final entanglement between Bob aRdmaximal. Therefore Fc|(|¢>)=E P(i|¢)|<¢|ai>|2, (1)
the initial entanglement in the channel must also be maximal i=1

(3] whereP(i|#) = (| Ai| ) is the probability of Alice obtain-

On the other hand, if Alice knows exactly what state she : o A
has, there is no need for any entanglement to reliably tran Ing the result corresponding to the positive oper ut of

. . T NS possible outcomes of the positive operator valued measure
mit _the state. She _S|_mply sends Bob cla_155|_cal |nformat|oQPOVM) (A} where S ,A;=1. The statela;) is Bob's
saying which state it is, and he prepares it himself. !

Between the two extremes of Alice possessing no priopui\?ﬁég'\tﬁ: i?]uhctosTaete is completelv unknown. the average
information of the state and Alice possessing full informa- P pietely X 9

tion, she may have some prior knowledge. For example, sh fl thﬁ f'dre]“try ?Vir I?nne\llterr]\ d'skt)”bl;lt'oﬂ 3\fmaltlhstﬂﬁs or\1/ t?e
may receive her qubits from a known ensembée fidOe(I:it Sopveei lesstz:':ei i§5] as been sho at tne average
={|¢y),py} Of stateq ¢,) with probability p,. We consider y

the situation where Alice knows that a preparer of quantum n

states provides her with one of two nonorthogonal states, = :f Pl(i MR1dO =2

say, | 1) =cos@2)|0)+sin(@2)|1) and |¢,)=sin(6/2)|0) ¢! 21 19Kt ei)] *

1050-2947/2000/686)/0623068)/$15.00 61 062306-1 ©2000 The American Physical Society



L. HENDERSON, L. HARDY, AND V. VEDRAL PHYSICAL REVIEW A61 062306

In this case, Alice may make an orthogonal measurement ir
any direction, and it is optimal for Bob to prepare the state
corresponding to Alice’s result.

On the other hand, when Alice’s state is drawn from an %[
ensemble of two state$|y,),|#,)}, with equal probabili- osal
ties, the fidelity

0.98

0.921

noo2
Fcl({|¢1>:|¢2>})=%21 j§=:1 P(ilgy) (] ai)|?

0.88[
is much higher. This is the case we consider in this paper. "
We first calculate the fidelity in the case where Bob sim- s}
ply prepares a guessed state corresponding to one of the tw
input states|a;) e {|1),| )}, foralli=1, ... n. Then the
fidelity is limited only by the errors Alice makes in measur- o8} - - L - : - ” .
ing, due to the fact that the signal states are nonorthogonal. o
We employ previous resultg on d.iStinQUiShing two S.tates' FIG. 1. Fidelity when Bob guesses one of the two input states.
These results hav_e _been_dt_erlve_d Wlth_reSpeCt to two dlffere_nlthe solid line corresponds to the measurement that minimizes Al-
ways of C_ha_ract(_erlzmg d'St'ngu'Sh"_ib'“t.y' The states may €licers probability of error, Eq(3), and the dashed line to a measure-
ther be distinguished so as to minimize the probability ofy,qp giving unambiguous discrimination of the two states, (Bx.
error in guessing the right state, or by using an “unambigu-
ous” measurement, which has no probability of error, but
which sometimes yields no information about the state.
It has been showi6] that the smallest attainable pro
ability of error in distinguishing two states is

0.82

For orthogonal state9)=0, F;=1. For maximally nonor-
b- thogonal states witld= /4, F,=0.927.
An alternative strategy is to construct a POVM that dis-
tinguishes the two outcomédg,) and| ) with no probabil-
L ity of error, but that has a third outcome where the state is
Pe=2—3 Tr([p1—pol)- completely unknown. Then the maximum probability of a
o B successful outcome i&-9], which is Pg=1—sin# in our
For two pure statejs);) and|s), the minimal probability of  c4qe |f the “don’t know” outcome is obtained, Bob chooses
error may be derived from the unitary evolution of the un- ¢ random which state to prepare. In half the cases, he suc-

known state and an ancilla qubit, initially in the stés,  ceeds. If he fails, there is still an overlap with the correct
on which a projective measurement will be performed in thesiate Therefore the fidelity is

{|0),|1)} basis:

1)l )= V1= Pel0)a] ) + VPl 1)l ), F=1=gsing+ i o. @
)
10) ol th) — \/P—c3|0>A|¢1>+ \/1_—Pe| A This fidelity is always lower than that achieved by minimiz-

ing the probability of errofsee Fig. 1
However, the strategy where Alice minimizes her prob-
ability of error and Bob prepares one of the input states is not
optimal. It is possible to achieve a higher fidelity if Bob
prepares a guess that has a slightly higher overlap with the
other state to take into account the possibility that Alice
Pe= (11— (41| 02)[?). makes an error. Alice still makes the measurement that
minimizes her probability of error. For the two states
For two pure statesyy)=cos@2)|0)+sin(0/2)|1) and |y,)=cos@2)|0)+sin(@/2)|]1) and |4,)=sin(@/2)|0)

If the ancilla is measured in the sta@ ,, we conclude that
the state i§ ), and if |1),, then we concludéy,). The
requirement that this evolution be unitary gives

|h2) =sin(612)|0) + cos(@2)|1), this is given by +cos@?2)|1) this is a projection ont{D) or |1). The positive
operators of the POVM to be performed ae=|0)(0| and
P.=1(1—cos6). A,=|1)(1|, and the corresponding probabilities are

If 6=0, the two states are orthogonal and the probability of

error is zero. If no error is made, Bob prepares Alice’s state _ 2 f
with perfect fidelity. If Alice makes an error, there is still P(L41)=KOly) I =cos 2]
some overlap with the correct state, given by?#inThe

fidelity is therefore

)
F=(1-P.)+P,si §=1—1(1—cosh)cog 6. (3) P(2ly)= |<l|‘/’1>|2:‘°"”2(§)’
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0 1
p(Ll2) =IOl E=sir| 3,

0.99

0.98

0
P(2| )= |<0|‘//2>|2:CO§(§>-

0.97

The fidelity is w 0.96
Fa=3Ip(L ) el g))P+p(2| ) Bly) o
+p(L| o) Kal o) P+ p(2|92) K Bl ) 1,

where @) and|B) are Bob’s guessed states. Assuming that
the fidelity must be the same under an interchange of the twc
states, and that the guessed states share the same symme oe . . L - : - ” S

as the input states, so thdta|y,)[?=[(B|¥,))?, and ’ 6
|8l 2= a|¥)]?, the fidelity becomes

FIG. 2. Fidelity when Alice minimizes her probability of error.
The dashed line shows the case where Bob prepares the state she
Fa=p(L|¢)[(al ) >+ p2| ) [ Bl 2, specifies, Eq(3), and the solid line the case where he optimizes his

(5) guess, Eq(5).
O+a _ error. This suggests that the fidelity of E§) is optimal. The
2 symmetry about= 7/4 may indicate optimality since all the

. o ) ) less efficient strategies that we investigated do not possess
Differentiating with respect to the choice of guessed amgle this symmetry. Fuchs and Peres give further numerical and

06—«
2

+sir? g sir?

(7
= co§§ cog

gives plausibility arguments in support of the optimality of this
fidelity.
dF¢ _ _ Until now, the discussion has focused on the situation in
Fyn P(1[¢)sin(6— @)+ p(2[)sin( 6+ a). which Alice and Bob communicate only by a classical chan-

nel. We now consider how shared entanglement can improve

We find the maximum value oF by setting ¢Fy/da)  the fidelity of teleportation.
=0. The angle that gives a maximum is
I1l. USE OF ENTANGLEMENT

1

a=tan

siné ) If Alice and Bob share only one entangled pair, perfect

cos 6/° two-state teleportation cannot be achieved without a full unit
of entanglement. By contrast, in the asymptotic case with

Substituting into Eq(5) gives the fidelity plotted in Fig. 2. many copies of the state and many entangled pairs, perfect

Notice that this fidelity, unlike the fidelity of the other strat- teleportation may be achieved with less than one full unit of

egies, is symmetrical about= /4. This result coincides entanglement for each qubit communicated.

with the following expression derived by Fuchs and Peres

[10], in the context of eavesdropping: A. Single-channel case

1 We prove that it is not possible to teleport perfectly with
Fa== (1+ V1= [ ) P+ Kl ). less than one full unit of entanglement, even if the state to be
2 teleported comes from a known ensemble of only two non-

orthogonal states. Let the state to be teleportefithe, and

In this scenario, Alice tries to communicate to Bob one of ahe entangled chann¢kb>23. Then the initial state of the
set of nonorthogonal states, which is intercepted by Eve. Evg,ee particles may be written as

wants to extract as much information as possible from a

measurement on the state, and at the same time to prepare a

new state with as high a fi_delity as possible with Alice’s |¢1|¢>23:E cff|k>12U[1|¢>3,

original state so as to deceive Bob. Eve performs the dual k

function of Alice as measurer and Bob as preparer in our

scheme, where Alice and Bob are connected only by a clasvhere the coefficient;’ may depend on the initial staig.

sical channel. It is plausible that for Bob to maximize the The state has been expanded as a bipartite decomposition of
fidelity, he should have maximum information about thethe first two particles versus the third, where the orthonormal
state and that Alice should also maximize her information bybasis of the first two particles is given Hyk);,}, and the
making the measurement that minimizes the probability oftorresponding states of the third particle M§1|¢>3, not
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necessarily orthogonal. Any general teleportation scheme p=35(| )] + W) (]).
must be of this form. The state can be transformed unitarily
as Now if Alice possesses a large numberof copies of the
gubit, she may use Schumacher compress$idi} to com-
_ ) press the same information intoS(p) qubits, whereS(p)
Ul #hlvzd= ( ; Ck|k>12) |4)s © =—tr(plog,p) is the Von Neumann entropy of the qulpit
If #=0 and the two states are orthogon&(p)=Ilog,2=1.
by the controlled unitary operatidd, on the third particle. This is the only case where no compression is possible. For
Let |A(¢))1o=(Zkci|k)12) and consider two input states, two maximally nonorthogonal states, with= /4, S(p)
|¢) and|¢’). By taking the overlap of E¢2) with a similar ~ ~0.907 and transmission requires 0.907 ebits per qubit of

equation for{¢'), we obtain information.
) , ) If Alice and Bob share a large numbmrof nonmaximally
1 D' [d)1=[1AA(S")|A(D))12](s(D"| D)) entangled pairs in the stajgg, with pa=Trg(pag). they

may distill mYp,) maximally entangled pairs using only

Since local operations and classical communicat{d?®,13. The
, Y quantity S(p,) denotes the amount of entanglement in the
{1 #)1=5("] D). shared pairs, and for a maximally entangled st&,)
it follows that either ¢’ |$)=0, or 1{A(¢")|A(¢))1,=1.1f =1 The amount of entangleme8{p,) required per qubit

(¢'|$)=0, the two input states are orthogonal and perfec@f information sent by Alice isS(p)=(n/m)S(p), which
teleportation can be achieved without the use of any enmay be less than 1 in the limit of large andn, when the
tanglement at all, since an exact measurement to distinguidAPut states are nonorthogonal. Clearly then, the asymptotic
the states can be performed. The vectph§¢)),, and  Caseis different from_ the situation where only single copies
then|A(¢))1,=|A(¢'))1, and consequently the coefficients

¢ must be independent of the input state so thatcy IV. TELEPORTATION THROUGH A NONMAXIMALLY
=c§" . Therefore the probability of obtaining the resklis ENTANGLED CHANNEL
independent of the input state. _ . Given that when Alice and Bob share only one nonmaxi-
_Any state to be teleported can be written as a linear commally entangled channel it is not possible to perform two-
bination of the statef) and|¢’): state teleportation perfectly, we would like to know how
B , high a fidelity can be achieved. Below, we compare several
ly)=ale)+Dble"). different strategies; however, it is still an open question what

the most optimal scheme would be.
If we apply the standard teleportation procedure, sending
the initial state

If both |¢) and| ') can be teleported perfectly by the same
operation, there exists a unitary transformatidrsuch that

U(|¢>1|¢>23):(2k Ck|k>12)|¢>3 |1//>1=cosg|0)+sin§exp(i¢)|1>

and through the nonmaximally entangled channel

U([o")1l4)29 = ( Ek Ck|k>12> [¢")3, |4)25=a|00)+ B|11),

. then the initial state of the three particles may be written as
where we have shown that the coefficieatsdo not depend P y

on the input state. Therefore

1 o -0
|¢>123—% ™) aCOS§|O>+,35m§e |1)

U(al$)a+bl¢")0) 2= 2 cidk)idal g)atble')a),
, +|q§‘>(acos§|0>—ﬁsinfe“f’|1>)
and so any state can be teleported perfectly. This would 2 2
mean it is possible to perfectly teleport a maximally mixed 0 0
state. By the arguments of the Introduction, this would re- +|¢,+>( asin—ei‘/’|0)+,8cos—|1>)
quire a full unit of entanglement. 2 2

. (M

0 . 0
B. Asymptotic case + l//>( —a Sini e'’l0)+B cos; | 1>)

Alice’s qubit is an equally weighted mixture of the two
possible input states and so can be described by the densi#yithout loss of generality, we assume thatnd B are real
matrix and thata< . The fidelity is given by
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4 and hence the optimal fidelity of teleportation is given by Eq.
F(lw))=2 p(ilpk )P, (®).
=1 In the two-state case, where Alice has either,)
=cos(@2)|0) + sin(6/2)| 1) or | 4r2) =sin(6/2)|0)

wherei is the index of the projections; =[ ¢)(¢i| onto the | ( Z051113 ith equal probabilities, the fidelity is

four Bell states

|p1)=[0"),

0 0
F=co§5+sin“§+aﬁ Sir? 6. 9
lp2)=1¢"),
When|y,) and|,) are not orthogonal, the fidelity can only
[pa)=9"), be unity if the channel is maximally entangled,=p3
=1M2.
lba)=v), Another strategy for teleportation is based on first purify-

ing the channel. Purification has some probability of convert-
and | «;) is Bob’s normalized and corrected outcoreg) ing the state to a maximally entangled state, which can
given the measurement result The probability of Alice achieve perfect teleportation, and some probability of failing,
measuring [¢*) or |¢7), given the input state|y) SO that no entanglement is shared and Alice and Bob must
=cos(@/2)|0) + sin(d/2) exp{¢)|1), is revert to the classical methods for sending the state with no
shared entanglement. For a single copy, the best purification
1 9 P is the “procrustean” method12], which has optimal effi-
p(1)=p(2|¢p)= E(az co§5+,82 sinzg); ciency 222 [15]. When the purification fails, Alice and Bob
are left with a product state. The input state is unaffected by
purification, so Alice may employ the best strategy for trans-
mitting the state without entanglement. For a completely un-
known input state, the fidelity iE;= 3; hence the fidelity is

the probability of measuringy™) or [¢~) is

1 0 0
P(3|y)=p(4|y)= 3 a? sinZE + 3? cosZE) .
F=%(1+a%). 10
The fidelity is then 3( ) (10
0 0 Higher fidelities are achieved in the two-state case. Then the
= — +sinf— i best fidelity that may be achieved is
F(l4)) coé‘2 +sm“2 + aB sirt 6.
Averaged over all initial states, this gives F =202+ (1—2a2)F, ., 1

1 (2m(m 9 )
- 1 airf— i i where
Fa=7— fo fo (co§2 +sm42 +aBsir? 6|sinddode

=3(1+ap). 8

It can be shown, using a result of Horodeekial. [14], that

the average fidelity given in E@8) is optimal for any tele-
portation scheme, whatever Alice’s measurement or Bob’s . .
corrections. Horodecket al. derive a general relation be- I the best measurement strategy with no entanglement with
tween the optimal fidelity of teleportatidf. and the maxi-
mal singlet fractionf, defined below, of the state used for

0+ «a

0 0—a\| .0
FC|=COS’ZECOS2(T +S|I’T2§S|n2 T

teleportation: a=tan ! Lne ]
cos 6
2f+1
tele™ g7 - For a completely unknown input state, teleporting directly

through the nonmaximally entangled channel is always better
For the nonmaximally entangled statd00)+ g|11), the than the strategy based on purification, Ef0), since «

maximal singlet fraction is < B; see Fig. 3. For two input states, on the other hand, the
fidelities of the different methods are plotted in Fig. 4. The

1 2 direct method is no longer always better than the purification
f=|—((00+(11])(2|00)+ B|11))| =1(1+2ap), method, though it is better when the entanglement in the

V2 channel is high, in which case it approaches the average
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1

this because it is known when the purification has failed.
Hence in the two-state case, the purification method is better
1 for low entanglement than the direct method.

In the two-state case, it is not known what the optimal
1 teleportation scheme is. The best bound we have found is
based on a combination of the direct and purification meth-
_ ods. This may be achieved by Alice partially purifying the
entangled channet|00)+ 8|11) to a more entangled chan-
nel, «’'|00)+ B’|11), wherea'=«. The probability of suc-
ceeding in this purification i®s=(a/a’)?. If the purifica-

tion succeeds, the direct method may be employed on the
more entangled state. If it fails, the best classical strategy
must be employed. Hence the fidelity is given by

)

FIG. 3. Teleportation through a nonmaximally entangled chan+or a particular nonmaximally entangled chanaelthis fi-

nel for an unknown state. The dotted line shows the purificationd(:‘.“ty is maximized by purifying to a particular channel char-
method, Eq(10), the solid line the direct method, E(B). acterized bya'.

0.95

0.9

0.85

08

0.75

07

Fclass- (12)

0.65 L L L 1 L L L F _
0 0.1 02 0.3 0.4 05 06 07 .8 -
[

o

) e
o’ dir(a )

fidelity. For low entanglement, the efficiency of the direct
method falls off steeply and becomes even worse than the

classical strategy without entanglement. Limitations on the fidelity of teleportation can be related

For a completely unknown state, teleportation via eithero limitations on the fidelity of cloning nonorthogonal quan-
strategy is always better than the classical method of meaum states. When a perfect teleportation is achieved, there
suring and communicating the result. However, when therghould be no information about the state left on Alice’s side
are only two possible input states, a large amount of inforthat would enable her to construct any approximate copy of
mation may be gained just by Alice measuring the state shehe state in addition to the perfectly teleported state. Telepor-
has. It turns out that the fidelity that may be achieved bytation using a maximally entangled pair achieves perfect fi-
Alice measuring her state and telling Bob the result classidelity, and the measurement on Alice’s side provides no in-
cally is higher than would result from a direct teleportation, formation since the probability of obtaining the different
if the channel has low entanglement. On the other handmeasurement outcomes is independent of the input state.
when the channel is first purified, it is possible to take ad-This was also indicated by Nielsen and Cay&$], who
vantage of the high classical fidelity by employing the clas-showed that teleportation is a special case of reversing a
sical strategy when the purification fails. It is possible to doquantum measurement, and that a necessary condition for

reversibility of a general quantum operation is that no infor-

! ' ' ' ' ' PSR mation about the prior state be obtainable from the measure-
ment. On the other hand, if the channel is not maximally
entangled, perfect teleportation cannot be achieved and Al-
ice’s measurement may provide some information about the
input state. We have seen that when there is no entanglement
in the channel at all, the optimal strategy is for Alice to
extract as much information as possible from her measure-
ment. The measurement result may then be used to prepare
an arbitrary numbeM of identical imperfect copies of the
] original state with fidelity given by Eq(1). This type of
cloning has been called “classical cloning’17] to distin-
guish it from the more general operation of quantum cloning
] that is based on unitary evolution of the input with an ancilla.
Quantum cloning can achieve higher fidelities than classical
cloning for a finite number of copieM. The process of

075 o o2 s oz o o Y o8 quantum cloning allows the use of more entanglement than
° classical cloning since the ancilla may remain entangled to

FIG. 4. Teleportation through a nonmaximally entangled chanihe input and the copies, which may also be entangled to one
nel for two states with9= /4. The dotted line shows the purifica- another. For two-state teleportation through a nonmaximally
tion method, Eq(11), the dashed line the direct method using the €ntangled channel, there is a trade off between the classical
standard corrections, E(P), and the solid line the optimal combi- cloning based on directly measuring the input state and the
nation of the two methods, EqL2). fidelity that can be achieved by teleportation based on the

V. RELATION TO TELECLONING
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entanglement. The exact relation between the constraints o '
sharing information among copies in cloning and in telepor-
tation is a topic for further research. However, one way in
which the relationship between cloning and teleportation
may be pursued is through a combination of the two proce-
dures in “telecloning.” We now investigate the effect af 096
priori information on this protocol.

098

w 0.941

A. State-dependent telecloning

Teleportation has been combined with optimal universal os}
cloning from 1 toM copies[4]. This is achieved by perform-
ing the usual teleportation protocol but with the entangled
channel being a multiparticle entangled state, called the
“telecloning” state. ForM =2, the telecloning state is a

four-qubit state 088 ) : ) : s - s
0 0.2 04 0.6 0.8 1 12 14 1.6

]

091

1 FIG. 5. The global fidelity of the clones produced in the tele-
|hrc)= E(|O>| bo) 1) b1)), (13)  cloning schemésolid line) as compared to the optimal global fidel-
ity for two-state cloningdotted ling.

where|¢) and|¢,) are the optimal cloning states produced wherea, b, andc depend on the overlap of the two states, as

by acting with the optimal cloning transformatith, on|0)  given in the papef18]. The telecloning state is constructed

and|1), respectively, just as before, Eq.13). The ancilla is required in order that
the recipients may use the standard Pauli rotations to correct
their state after they receive the classical message from Al-

| $0)=U12(10)al00) = V/30)Al00) + VE[1)A(0D+]10), ice. Notice, however, thdtp,) and|¢;) are no longer the
optimal clones. The fidelity of cloning is shown in Fig. 5.

The reduced density matrix found by tracing the density
| 1) =U15(|0)a|10)) = \/§| 1)a|12) + \/g|o>A(|01)+|10)), matrix for the telecloning state over Alice’s two qubits is

where subscriptA denotes the ancilla. In the telecloning a’+b%+c> 0 0 2a(b+c)
state, the first two qubits and the “port” are held by Alice 1 0 b2 0 0
and the last two qubits belong to two distant users, Bob and P3== 5

Claire. When the other qubits are traced over after teleclon- 2 0 0 b 0

ing, these yield the optimal clones of Alice’s input state. The 2a(b+c) 0 0 a’+b%+c?

total amount of entanglement between Alice and the other
users, given by the Von Neumann entropy of the reducedhe entanglement between the two sides now increases with
density matrix after tracing over one side, was found to bghe overlap of the two statdsy;) and|¢,), but is always
log,(3), clearly less than the two units of entanglement re-
quired if cloning is performed first and followed by the stan-
dard teleportation. o
Adapting the telecloning scheme to the communication of
two states produces a surprising result in terms of the amoun
of entanglement required. Bruss al. [18] have found the
optimal cloning transformatiok) with respect to the global 105}
fidelity for two-state cloning from one copy to two. An an-
cilla is not necessary. Following the same procedure as in thg
universal case for constructing the telecloning state, we mayz
add an ancilla, giving the cloned states to be 1151
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| #0)=U1(0)a|00)) =a|0)o|00) +b| 1) a(|02) +|10))
+¢|0)A|12),

1 I L I L L 1 L
0 02 0.4 06 0.8 1 12 1.4 1.6
[]

=U14(]0)4|10))=c|1)A|00) +b|0)A(|01) +|10
|¢l> 1| >A| 2 | >A| ) | >A(| ) | 2 FIG. 6. Entanglement between Alice and receivers in teleclon-
+al1)a12), ing.
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less than log(3)~1.585; see Fig. 6. However, each qubit is could be extended to include mixed entangled states. The

maximally mixed so the entanglement between any one qubl€lationship between cloning and teleportation watipriori

and the other three is 1. This means that Alice’s port qubiknowledge could be investigated further by finding the
does share a unit of entanglement with the other three qubitémount of entanglement required by a state-dependent tele-
This is consistent with the requirement that perfect teleporcloning scheme that preserves the optimality of the clones
tation of two states employ a full unit of entanglement. Inproduced. Asymmetric telecloning or genehto M state-

this telecloning scheme, the amount of overall entanglemerfiependent telecloning could also be considered. It may be
is lower than in the universal case. It is an interesting quesPossible to exactly quantify the relationship between the
tion whether a te|ec|0ning scheme giving the optima| two-amount of information Alice gains from her measurement,

state cloning fidelity would also require less entanglement. the amount of entanglement in the channel, and Bob’s infor-
mation. Our work provides a different way of understanding
VI. CONCLUSION the respective roles of classical information and quantum en-
tanglement in the new field of quantum information process-
In this paper, we have shown the surprising result ¢hat ing.
priori knowledge makes no difference to the amount of en-
tanglement required for perfect teleportatlon. Wg hgve com- ACKNOWLEDGMENTS
puted lower bounds for two-state teleportation fidelity using
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