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Two-state teleportation

L. Henderson, L. Hardy, and V. Vedral
Centre for Quantum Computation, Clarendon Laboratory, University of Oxford, Parks Road OX1 3PU, United Kingdom

~Received 7 October 1999; revised manuscript received 23 February 2000; published 15 May 2000!

Quantum teleportation with additionala priori information about the input state achieves higher fidelity than
teleportation of a completely unknown state. However, perfect teleporation of two nonorthogonal input states
requires the same amount of entanglement as perfect teleportation of an unknown state, namely one ebit. We
analyze how well two-state teleportation can be achieved using every degree of pure-state entanglement. We
find the highest fidelity of ‘‘teleportation’’ that can be achieved with only classical communication but no
shared entanglement. A two-state telecloning scheme is constructed.

PACS number~s!: 03.67.2a, 89.70.1c, 89.80.1h, 03.65.Bz
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I. INTRODUCTION

The transmission of quantum states can be accomplis
by either the direct sending of qubits or by the transmiss
of classical bits where the sender and receiver share
tanglement. In schemes for quantum teleportation, it
been shown that the transmission of two classical bits,
gether with the use of one ebit, achieves the same resul
sending one qubit@1#.

If the state to be teleported is completely unknown,
fact that the amount of entanglement between two separ
subsystems may not increase under local operations m
that faithful teleporation cannot be achieved without one
unit of entanglement. The argument goes as follows. Alic
particle is initially in an unknown state, which could be
mixed state due to entanglement with another particleR at
Alice’s end. After the teleportation, the entanglement b
tween Alice’s particle andR is transferred to an entangle
ment between Bob’s particle andR by entanglement swap
ping @2#. The original entangled channel between Alice a
Bob is completely destroyed. Local operations and class
communication cannot increase the entanglement betw
Alice and Bob. Therefore the original entanglement in t
channel must be at least as high as the final entanglem
between Bob’s particle andR. However, the initial state o
Alice’s particle is completely unknown; it may be a max
mally mixed state, arising because Alice’s particle is ma
mally entangled to another particle,R. This would make the
final entanglement between Bob andR maximal. Therefore
the initial entanglement in the channel must also be maxi
@3#.

On the other hand, if Alice knows exactly what state s
has, there is no need for any entanglement to reliably tra
mit the state. She simply sends Bob classical informat
saying which state it is, and he prepares it himself.

Between the two extremes of Alice possessing no p
information of the state and Alice possessing full inform
tion, she may have some prior knowledge. For example,
may receive her qubits from a known ensemblee
5$ufx&,px% of statesufx& with probability px . We consider
the situation where Alice knows that a preparer of quant
states provides her with one of two nonorthogonal sta
say, uc1&5cos(u/2)u0&1sin(u/2)u1& and uc2&5sin(u/2)u0&
1050-2947/2000/61~6!/062306~8!/$15.00 61 0623
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1cos(u/2)u1& with equal probabilities. Alice then knows a
most everything about the state. In effect, she has to tran
one bit of information to Bob saying which of the two stat
she has. Is it possible to teleport the quantum state in
case, using less than the full unit of entanglement requ
when the state is completely unknown?

It turns out, rather surprisingly, that it is not possible a
that a full unit of entanglement is needed even for telepo
tion of only two states. This is shown in Sec. III. In Sec.
we find the upper bound for the fidelity of sending the st
with no entanglement. In Sec. IV, we consider teleportat
using a nonmaximally entangled channel. We make so
connections between teleportation and cloning in Sec. V
adapt the telecloning scheme of Muraoet al. @4# to the case
of telecloning two nonorthogonal states. The two-state te
cloning state is now different from that for universal tel
cloning. We find that the amount of entanglement requi
between the sender and recipients is now state depende

II. SCHEMES WITHOUT ENTANGLEMENT

For comparison, we first determine what fidelity of tran
mission can be achieved without using any entanglem
only classical communication. Alice measures her state
sends the result to Bob, who makes his best guess of the
based on this information. The fidelity of sending the st
uc& is defined as

Fcl~ uc&)5(
i 51

n

P~ i uc!z^cua i& z2, ~1!

whereP( i uc)5^cuAi uc& is the probability of Alice obtain-
ing the result corresponding to the positive operatorAi out of
n possible outcomes of the positive operator valued mea
~POVM! $Ai% where ( i 51

n Ai51. The stateua i& is Bob’s
guess, given outcomei.

When the input state is completely unknown, the avera
of the fidelity over an even distribution of all states on t
Bloch sphere is taken. It has been shown that the ave
fidelity over all states is@5#

Fcl5E (
i 51

n

P@~ i uc!z^cua i& z2#dV5 2
3 .
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In this case, Alice may make an orthogonal measuremen
any direction, and it is optimal for Bob to prepare the st
corresponding to Alice’s result.

On the other hand, when Alice’s state is drawn from
ensemble of two states,$uc1&,uc2&%, with equal probabili-
ties, the fidelity

Fcl~$uc1&,uc2&%)5 1
2 (

i 51

n

(
j 51

2

P~ i uc j !u^c j ua i&u2

is much higher. This is the case we consider in this pape
We first calculate the fidelity in the case where Bob si

ply prepares a guessed state corresponding to one of the
input states,ua i&P$uc1&,uc2&%, for all i 51, . . . ,n. Then the
fidelity is limited only by the errors Alice makes in measu
ing, due to the fact that the signal states are nonorthogo
We employ previous results on distinguishing two stat
These results have been derived with respect to two diffe
ways of characterizing distinguishability. The states may
ther be distinguished so as to minimize the probability
error in guessing the right state, or by using an ‘‘unambig
ous’’ measurement, which has no probability of error, b
which sometimes yields no information about the state.

It has been shown@6# that the smallest attainable prob
ability of error in distinguishing two states is

Pe5 1
2 2 1

4 Tr~ ur12r0u!.

For two pure statesuc1& anduc2&, the minimal probability of
error may be derived from the unitary evolution of the u
known state and an ancilla qubit, initially in the stateu0&A ,
on which a projective measurement will be performed in
$u0&,u1&% basis:

u0&Auc1&→A12Peu0&Auc1&1APeu1&Auc2&,
~2!

u0&Auc2&→APeu0&Auc1&1A12Peu1&Auc2&.

If the ancilla is measured in the stateu0&A , we conclude that
the state isuc1&, and if u1&A , then we concludeuc2&. The
requirement that this evolution be unitary gives

Pe5 1
2 ~16A12u^c1uc2&u2!.

For two pure statesuc1&5cos(u/2)u0&1sin(u/2)u1& and
uc2&5sin(u/2)u0&1cos(u/2)u1&, this is given by

Pe5 1
2 ~12cosu!.

If u50, the two states are orthogonal and the probability
error is zero. If no error is made, Bob prepares Alice’s st
with perfect fidelity. If Alice makes an error, there is st
some overlap with the correct state, given by sin2 u. The
fidelity is therefore

F5~12Pe!1Pe sin2 u512 1
2 ~12cosu!cos2 u. ~3!
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For orthogonal states,u50, F151. For maximally nonor-
thogonal states withu5p/4, F150.927.

An alternative strategy is to construct a POVM that d
tinguishes the two outcomesuc1& anduc2& with no probabil-
ity of error, but that has a third outcome where the state
completely unknown. Then the maximum probability of
successful outcome is@7–9#, which is Ps512sinu in our
case. If the ‘‘don’t know’’ outcome is obtained, Bob choos
at random which state to prepare. In half the cases, he
ceeds. If he fails, there is still an overlap with the corre
state. Therefore the fidelity is

F512 1
2 sinu1 1

2 sin3 u. ~4!

This fidelity is always lower than that achieved by minimi
ing the probability of error~see Fig. 1!.

However, the strategy where Alice minimizes her pro
ability of error and Bob prepares one of the input states is
optimal. It is possible to achieve a higher fidelity if Bo
prepares a guess that has a slightly higher overlap with
other state to take into account the possibility that Ali
makes an error. Alice still makes the measurement t
minimizes her probability of error. For the two state
uc1&5cos(u/2)u0&1sin(u/2)u1& and uc2&5sin(u/2)u0&
1cos(u/2)u1& this is a projection ontou0& or u1&. The positive
operators of the POVM to be performed areA15u0&^0u and
A25u1&^1u, and the corresponding probabilities are

p~1uc1!5 z^0uc1& z25cos2S u

2D ,

p~2uc1!5 z^1uc1& z25sin2S u

2D ,

FIG. 1. Fidelity when Bob guesses one of the two input sta
The solid line corresponds to the measurement that minimizes
ice’s probability of error, Eq.~3!, and the dashed line to a measur
ment giving unambiguous discrimination of the two states, Eq.~4!.
6-2
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TWO-STATE TELEPORTATION PHYSICAL REVIEW A61 062306
p~1uc2!5u^0uc2&u25sin2S u

2D ,

p~2uc2!5u^0uc2&u25cos2S u

2D .

The fidelity is

Fcl5
1
2 @p~1uc1!z^auc1!& z21p~2uc1!z^buc1& z2

1p~1uc2!z^auc2& z21p~2uc2!z^buc2& z2],

where ua& and ub& are Bob’s guessed states. Assuming t
the fidelity must be the same under an interchange of the
states, and that the guessed states share the same sym
as the input states, so thatz^auc1& z25 z^buc2& z2, and
z^buc1& z25 z^auc2& z2, the fidelity becomes

Fcl5p~1uc1!z^auc1& z21p~2uc1!z^buc1& z2,
~5!

5cos2
u

2
cos2S u2a

2 D1sin2
u

2
sin2 S u1a

2 D .

Differentiating with respect to the choice of guessed angla
gives

]Fcl

]a
5p~1uc1!sin~u2a!1p~2uc1!sin~u1a!.

We find the maximum value ofFcl by setting (]Fcl /]a)
50. The angle that gives a maximum is

a5tan21S sinu

cos2 u D .

Substituting into Eq.~5! gives the fidelity plotted in Fig. 2
Notice that this fidelity, unlike the fidelity of the other stra
egies, is symmetrical aboutu5p/4. This result coincides
with the following expression derived by Fuchs and Pe
@10#, in the context of eavesdropping:

Fcl5
1

2
~11A12 z^c1uc2& z21 z^c1uc2& z4!.

In this scenario, Alice tries to communicate to Bob one o
set of nonorthogonal states, which is intercepted by Eve.
wants to extract as much information as possible from
measurement on the state, and at the same time to prep
new state with as high a fidelity as possible with Alice
original state so as to deceive Bob. Eve performs the d
function of Alice as measurer and Bob as preparer in
scheme, where Alice and Bob are connected only by a c
sical channel. It is plausible that for Bob to maximize t
fidelity, he should have maximum information about t
state and that Alice should also maximize her information
making the measurement that minimizes the probability
06230
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error. This suggests that the fidelity of Eq.~5! is optimal. The
symmetry aboutu5p/4 may indicate optimality since all the
less efficient strategies that we investigated do not pos
this symmetry. Fuchs and Peres give further numerical
plausibility arguments in support of the optimality of th
fidelity.

Until now, the discussion has focused on the situation
which Alice and Bob communicate only by a classical cha
nel. We now consider how shared entanglement can impr
the fidelity of teleportation.

III. USE OF ENTANGLEMENT

If Alice and Bob share only one entangled pair, perfe
two-state teleportation cannot be achieved without a full u
of entanglement. By contrast, in the asymptotic case w
many copies of the state and many entangled pairs, pe
teleportation may be achieved with less than one full unit
entanglement for each qubit communicated.

A. Single-channel case

We prove that it is not possible to teleport perfectly wi
less than one full unit of entanglement, even if the state to
teleported comes from a known ensemble of only two n
orthogonal states. Let the state to be teleported beuf&1 , and
the entangled channeluf&23. Then the initial state of the
three particles may be written as

uf1uc&235(
k

ck
fuk&12Uk

21uf&3 ,

where the coefficientck
f may depend on the initial statef.

The state has been expanded as a bipartite decompositio
the first two particles versus the third, where the orthonorm
basis of the first two particles is given by$uk&12%, and the
corresponding states of the third particle areUk

21uf&3 , not

FIG. 2. Fidelity when Alice minimizes her probability of erro
The dashed line shows the case where Bob prepares the stat
specifies, Eq.~3!, and the solid line the case where he optimizes
guess, Eq.~5!.
6-3
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L. HENDERSON, L. HARDY, AND V. VEDRAL PHYSICAL REVIEW A61 062306
necessarily orthogonal. Any general teleportation sche
must be of this form. The state can be transformed unita
as

U~ uf&1uc&23)5S (
k

ck
fuk&12D uf&3 ~6!

by the controlled unitary operationUk on the third particle.
Let uA(f)&125((kck

fuk&12) and consider two input states
uf& anduf8&. By taking the overlap of Eq.~2! with a similar
equation foruf8&, we obtain

1^f8uf&15@12̂ A~f8!uA~f!&12#~3^f8uf&3!.

Since

1^f8uf&153^f8uf&3 ,

it follows that either̂ f8uf&50, or 12̂ A(f8)uA(f)&1251. If
^f8uf&50, the two input states are orthogonal and perf
teleportation can be achieved without the use of any
tanglement at all, since an exact measurement to disting
the states can be performed. The vectorsuA(f)&12 and
uA(f8)&12 are normalized. Hence if12̂ A(f8)uA(f)&1251,
then uA(f)&125uA(f8)&12 and consequently the coefficien
ck

f must be independent of the input statef, so thatck
f

5ck
f8 . Therefore the probability of obtaining the resultk is

independent of the input state.
Any state to be teleported can be written as a linear co

bination of the statesuf& and uf8&:

uc&5auf&1buf8&.

If both uf& and uf8& can be teleported perfectly by the sam
operation, there exists a unitary transformationU such that

U~ uf&1uc&23)5S (
k

ckuk&12D uf&3

and

U~ uf8&1uc&23)5S (
k

ckuk&12D uf8&3 ,

where we have shown that the coefficientsck do not depend
on the input state. Therefore

U~auf&11buf8&1)uc&235(
k

ckuk&12~auf&31buf8&3),

and so any state can be teleported perfectly. This wo
mean it is possible to perfectly teleport a maximally mix
state. By the arguments of the Introduction, this would
quire a full unit of entanglement.

B. Asymptotic case

Alice’s qubit is an equally weighted mixture of the tw
possible input states and so can be described by the de
matrix
06230
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r5 1
2 ~ uc1&^c1u1uc2&^c2u!.

Now if Alice possesses a large numbern of copies of the
qubit, she may use Schumacher compression@11# to com-
press the same information intonS(r) qubits, whereS(r)
52tr(r log2 r) is the Von Neumann entropy of the qubitr.
If u50 and the two states are orthogonal,S(r)5 log2 251.
This is the only case where no compression is possible.
two maximally nonorthogonal states, withu5p/4, S(r)
'0.907 and transmission requires 0.907 ebits per qubi
information.

If Alice and Bob share a large numberm of nonmaximally
entangled pairs in the staterAB , with rA5TrB(rAB), they
may distill mS(rA) maximally entangled pairs using onl
local operations and classical communication@12,13#. The
quantity S(rA) denotes the amount of entanglement in t
shared pairs, and for a maximally entangled state,S(rA)
51. The amount of entanglementS(rA) required per qubit
of information sent by Alice isS(rA)5(n/m)S(r), which
may be less than 1 in the limit of largem and n, when the
input states are nonorthogonal. Clearly then, the asympt
case is different from the situation where only single cop
of the states are available.

IV. TELEPORTATION THROUGH A NONMAXIMALLY
ENTANGLED CHANNEL

Given that when Alice and Bob share only one nonma
mally entangled channel it is not possible to perform tw
state teleportation perfectly, we would like to know ho
high a fidelity can be achieved. Below, we compare seve
different strategies; however, it is still an open question w
the most optimal scheme would be.

If we apply the standard teleportation procedure, send
the initial state

uc&15cos
u

2
u0&1sin

u

2
exp~ if!u1&

through the nonmaximally entangled channel

uc&235au00&1bu11&,

then the initial state of the three particles may be written

uc&1235
1

&
F uf1&S a cos

u

2
u0&1b sin

u

2
eifu1& D

1uf2&S a cos
u

2
u0&2b sin

u

2
eifu1& D

1uc1&S a sin
u

2
eifu0&1b cos

u

2
u1& D

1uc2&S 2a sin
u

2
eifu0&1b cos

u

2
u1& D G . ~7!

Without loss of generality, we assume thata andb are real
and thata<b. The fidelity is given by
6-4
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F~ uc&)5(
i 51

4

p~ i uc!z^cua i& z2,

wherei is the index of the projectionsAi5uf i&^f i u onto the
four Bell states

uf1&5uf1&,

uf2&5uf2&,

uf3&5uc1&,

uf4&5uc2&,

and ua i& is Bob’s normalized and corrected outcomeua i&
given the measurement resulti. The probability of Alice
measuring uf1& or uf2&, given the input stateuc&
5cos(u/2)u0&1sin(u/2)exp(if)u1&, is

p~1uc!5p~2uc!5
1

2 S a2 cos2
u

2
1b2 sin2

u

2 D ;

the probability of measuringuc1& or uc2& is

p~3uc!5p~4uc!5
1

2 S a2 sin2
u

2
1b2 cos2

u

2 D .

The fidelity is then

F~ uc&)5cos4
u

2
1sin4

u

2
1ab sin2 u.

Averaged over all initial states, this gives

Fav5
1

4p E
0

2pE
0

pS cos4
u

2
1sin4

u

2
1ab sin2 u D sinu du df

5 2
3 ~11ab!. ~8!

It can be shown, using a result of Horodeckiet al. @14#, that
the average fidelity given in Eq.~8! is optimal for any tele-
portation scheme, whatever Alice’s measurement or Bo
corrections. Horodeckiet al. derive a general relation be
tween the optimal fidelity of teleportationF tele and the maxi-
mal singlet fractionf, defined below, of the state used f
teleportation:

F tele5
2 f 11

3
.

For the nonmaximally entangled stateau00&1bu11&, the
maximal singlet fraction is

f 5U 1

&
~^00u1^11u!~au00&1bu11&!U2

5 1
2 ~112ab!,
06230
’s

and hence the optimal fidelity of teleportation is given by E
~8!.

In the two-state case, where Alice has eitheruc1&
5cos(u/2)u0&1sin(u/2)u1& or uc2&5sin(u/2)u0&
1cos(u/2)u1& with equal probabilities, the fidelity is

F5cos4
u

2
1sin4

u

2
1ab sin2 u. ~9!

Whenuc1& anduc2& are not orthogonal, the fidelity can onl
be unity if the channel is maximally entangled,a5b
51/&.

Another strategy for teleportation is based on first puri
ing the channel. Purification has some probability of conve
ing the state to a maximally entangled state, which c
achieve perfect teleportation, and some probability of failin
so that no entanglement is shared and Alice and Bob m
revert to the classical methods for sending the state with
shared entanglement. For a single copy, the best purifica
is the ‘‘procrustean’’ method@12#, which has optimal effi-
ciency 2a2 @15#. When the purification fails, Alice and Bob
are left with a product state. The input state is unaffected
purification, so Alice may employ the best strategy for tran
mitting the state without entanglement. For a completely
known input state, the fidelity isFcl5

2
3 ; hence the fidelity is

F5 2
3 ~11a2!. ~10!

Higher fidelities are achieved in the two-state case. Then
best fidelity that may be achieved is

F52a21~122a2!Fcl , ~11!

where

Fcl5cos2
u

2
cos2S u2a

2 D1sin2
u

2
sin2S u1a

2 D
is the best measurement strategy with no entanglement

a5tan21S sinu

cos2 u D .

For a completely unknown input state, teleporting direc
through the nonmaximally entangled channel is always be
than the strategy based on purification, Eq.~10!, since a
<b; see Fig. 3. For two input states, on the other hand,
fidelities of the different methods are plotted in Fig. 4. T
direct method is no longer always better than the purificat
method, though it is better when the entanglement in
channel is high, in which case it approaches the aver
6-5
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fidelity. For low entanglement, the efficiency of the dire
method falls off steeply and becomes even worse than
classical strategy without entanglement.

For a completely unknown state, teleportation via eith
strategy is always better than the classical method of m
suring and communicating the result. However, when th
are only two possible input states, a large amount of inf
mation may be gained just by Alice measuring the state
has. It turns out that the fidelity that may be achieved
Alice measuring her state and telling Bob the result cla
cally is higher than would result from a direct teleportatio
if the channel has low entanglement. On the other ha
when the channel is first purified, it is possible to take a
vantage of the high classical fidelity by employing the cla
sical strategy when the purification fails. It is possible to

FIG. 3. Teleportation through a nonmaximally entangled ch
nel for an unknown state. The dotted line shows the purificat
method, Eq.~10!, the solid line the direct method, Eq.~8!.

FIG. 4. Teleportation through a nonmaximally entangled ch
nel for two states withu5p/4. The dotted line shows the purifica
tion method, Eq.~11!, the dashed line the direct method using t
standard corrections, Eq.~9!, and the solid line the optimal combi
nation of the two methods, Eq.~12!.
06230
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this because it is known when the purification has faile
Hence in the two-state case, the purification method is be
for low entanglement than the direct method.

In the two-state case, it is not known what the optim
teleportation scheme is. The best bound we have foun
based on a combination of the direct and purification me
ods. This may be achieved by Alice partially purifying th
entangled channelau00&1bu11& to a more entangled chan
nel, a8u00&1b8u11&, wherea8>a. The probability of suc-
ceeding in this purification isPs5(a/a8)2. If the purifica-
tion succeeds, the direct method may be employed on
more entangled state. If it fails, the best classical strat
must be employed. Hence the fidelity is given by

F5S a

a8D
2

Fdir~a8!1F12S a

a8D
2GFclass. ~12!

For a particular nonmaximally entangled channela, this fi-
delity is maximized by purifying to a particular channel cha
acterized bya8.

V. RELATION TO TELECLONING

Limitations on the fidelity of teleportation can be relate
to limitations on the fidelity of cloning nonorthogonal qua
tum states. When a perfect teleportation is achieved, th
should be no information about the state left on Alice’s s
that would enable her to construct any approximate copy
the state in addition to the perfectly teleported state. Telep
tation using a maximally entangled pair achieves perfect
delity, and the measurement on Alice’s side provides no
formation since the probability of obtaining the differe
measurement outcomes is independent of the input s
This was also indicated by Nielsen and Caves@16#, who
showed that teleportation is a special case of reversin
quantum measurement, and that a necessary condition
reversibility of a general quantum operation is that no inf
mation about the prior state be obtainable from the meas
ment. On the other hand, if the channel is not maxima
entangled, perfect teleportation cannot be achieved and
ice’s measurement may provide some information about
input state. We have seen that when there is no entanglem
in the channel at all, the optimal strategy is for Alice
extract as much information as possible from her meas
ment. The measurement result may then be used to pre
an arbitrary numberM of identical imperfect copies of the
original state with fidelity given by Eq.~1!. This type of
cloning has been called ‘‘classical cloning’’@17# to distin-
guish it from the more general operation of quantum clon
that is based on unitary evolution of the input with an ancil
Quantum cloning can achieve higher fidelities than class
cloning for a finite number of copiesM. The process of
quantum cloning allows the use of more entanglement t
classical cloning since the ancilla may remain entangled
the input and the copies, which may also be entangled to
another. For two-state teleportation through a nonmaxim
entangled channel, there is a trade off between the clas
cloning based on directly measuring the input state and
fidelity that can be achieved by teleportation based on
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entanglement. The exact relation between the constraint
sharing information among copies in cloning and in telep
tation is a topic for further research. However, one way
which the relationship between cloning and teleportat
may be pursued is through a combination of the two pro
dures in ‘‘telecloning.’’ We now investigate the effect ofa
priori information on this protocol.

A. State-dependent telecloning

Teleportation has been combined with optimal univer
cloning from 1 toM copies@4#. This is achieved by perform
ing the usual teleportation protocol but with the entang
channel being a multiparticle entangled state, called
‘‘telecloning’’ state. For M52, the telecloning state is
four-qubit state

ucTC&5
1

&
~ u0&uf0&1u1&uf1&), ~13!

whereuf0& anduf1& are the optimal cloning states produc
by acting with the optimal cloning transformationU12 on u0&
and u1&, respectively,

uf0&5U12~ u0&Au00&)5A2
3 u0&Au00&1A1

6 u1&A~ u01&1u10&),

uf1&5U12~ u0&Au10&)5A2
3 u1&Au11&1A1

6 u0&A~ u01&1u10&),

where subscriptA denotes the ancilla. In the teleclonin
state, the first two qubits and the ‘‘port’’ are held by Alic
and the last two qubits belong to two distant users, Bob
Claire. When the other qubits are traced over after telec
ing, these yield the optimal clones of Alice’s input state. T
total amount of entanglement between Alice and the ot
users, given by the Von Neumann entropy of the redu
density matrix after tracing over one side, was found to
log2(3), clearly less than the two units of entanglement
quired if cloning is performed first and followed by the sta
dard teleportation.

Adapting the telecloning scheme to the communication
two states produces a surprising result in terms of the am
of entanglement required. Brusset al. @18# have found the
optimal cloning transformationU with respect to the globa
fidelity for two-state cloning from one copy to two. An an
cilla is not necessary. Following the same procedure as in
universal case for constructing the telecloning state, we m
add an ancilla, giving the cloned states to be

uf0&5U12~ u0&Au00&)5au0&Au00&1bu1&A~ u01&1u10&)

1cu0&Au11&,

uf1&5U12~ u0&Au10&)5cu1&Au00&1bu0&A~ u01&1u10&)

1au1&Au11&,
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wherea, b, andc depend on the overlap of the two states,
given in the paper@18#. The telecloning state is constructe
just as before, Eq.~13!. The ancilla is required in order tha
the recipients may use the standard Pauli rotations to cor
their state after they receive the classical message from
ice. Notice, however, thatuf0& and uf1& are no longer the
optimal clones. The fidelity of cloning is shown in Fig. 5.

The reduced density matrix found by tracing the dens
matrix for the telecloning state over Alice’s two qubits is

r345
1

2 S a21b21c2 0 0 2a~b1c!

0 b2 0 0

0 0 b2 0

2a~b1c! 0 0 a21b21c2

D .

The entanglement between the two sides now increases
the overlap of the two statesuc1& and uc2&, but is always

FIG. 6. Entanglement between Alice and receivers in telecl
ing.

FIG. 5. The global fidelity of the clones produced in the te
cloning scheme~solid line! as compared to the optimal global fide
ity for two-state cloning~dotted line!.
6-7
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less than log2(3)'1.585; see Fig. 6. However, each qubit
maximally mixed so the entanglement between any one q
and the other three is 1. This means that Alice’s port qu
does share a unit of entanglement with the other three qu
This is consistent with the requirement that perfect telep
tation of two states employ a full unit of entanglement.
this telecloning scheme, the amount of overall entanglem
is lower than in the universal case. It is an interesting qu
tion whether a telecloning scheme giving the optimal tw
state cloning fidelity would also require less entanglemen

VI. CONCLUSION

In this paper, we have shown the surprising result thaa
priori knowledge makes no difference to the amount of
tanglement required for perfect teleportation. We have co
puted lower bounds for two-state teleportation fidelity us
a nonmaximally entangled pure state as a channel, and
exact result for the two-state fidelity with no entanglemen

This work opens a number of possible directions for
ture research. In this paper, only pure entangled states
considered as channels for teleportation. The investiga
.

s

ry
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could be extended to include mixed entangled states.
relationship between cloning and teleportation witha priori
knowledge could be investigated further by finding t
amount of entanglement required by a state-dependent
cloning scheme that preserves the optimality of the clo
produced. Asymmetric telecloning or generalN to M state-
dependent telecloning could also be considered. It may
possible to exactly quantify the relationship between
amount of information Alice gains from her measureme
the amount of entanglement in the channel, and Bob’s in
mation. Our work provides a different way of understandi
the respective roles of classical information and quantum
tanglement in the new field of quantum information proce
ing.
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